Schedule 27 Oct 2024
- IELTS writing -1
- IELTS speaking -1
- IELTS wordlist -3
- water wave chapter 7 and part of chapter 8
Water dynamics in finite depth are more complex and interesting than in infinite depth, even under simple conditions with zero surface pressure and steady motion.
Hypotheses
- Surface pressure is zero: \(p=0\), motion is steady: \(\frac{\partial}{\partial t}=0\). note: steady flow implies the physical quantities of the fluid do not vary with time, at fixed point in space.
notes
If motion is uniform: \(\nabla \phi=0\) which indicates: The properties are the same at every point in space. therefore the convective derivative vanish as well.
Boundary conditions
- incompressible flow: \(\nabla^2 \varphi=0\)
- dynamic and kinematic condition on free surface \[ \left.\begin{array}{rl} \frac{p}{p}+g \eta+\varphi_t+U \varphi_x+\frac{1}{2} U^2 & =0 \\ \eta_t+U \eta_x-\varphi_y & =0 \end{array}\right\} \quad \text { at } y=0 \]
- bottom condition
\[ \varphi_y=0 \quad \text { ant } y=-h \]
Solution
under these assumptions. the expressions becomes. \[ \begin{aligned} & \nabla^2 \varphi=0 \quad(1) \\ & \frac{p}{\rho}+g \eta+U \varphi_x+\frac{1}{2} U^2=\left.0 \quad\right|_{y=0} \\ & \quad U \eta_x-\varphi_y=\left.0 \quad\right|_{y=0} \\ & \varphi_y=\left.0 \quad\right|_{y=-h} \end{aligned} \] thus it follows that
\[ \begin{aligned} & \varphi_y+\frac{U^2}{g} \varphi_{x x}=0 \quad \left. \quad\right|_{y=0}\quad (2) \\ & \varphi_y=0 \quad \left. \quad\right|_{y=-h}\quad(3) \end{aligned} \]
A solution that conforms to all conditions is \[ \varphi(x, y)=A \cosh m(y+h) \cos (m x+a) \]
where \(A\) and \(a\) are constants, moreover, \(m\) is a root of the equation
\[ \frac{U^2}{g h}=\frac{\tanh m h}{m h} \]
Eqn (2) is extended to \(y<0\) by analytic continuation
\[ \varphi_y+\frac{U^2}{g} \varphi_{x x}=0 \quad y \leqslant 0 \]
also
\[ \begin{aligned} & \varphi_{x x}+\varphi_{y y}=0 \\ \Rightarrow \quad & \varphi_y-\frac{u^2}{g} \varphi_{y y}=0 \quad(y \leq 0) \end{aligned} \] The selection of an appropriate solution is outlined as follows.
\[ \varphi=c(x) \cosh \frac{g}{U^2} y \quad \text{or}\quad c(x) e^{\frac{g}{U^2} y} \quad\text{or others?} \] - case1: \(\varphi=c(x) e^{\frac{g}{U^2}y}\) and given condition (3)
\[ \begin{aligned} & \varphi_y=\frac{g}{U^2} c(x) e^{\frac{g}{U^2} y} \\ & \varphi_{y y}=\left(\frac{g}{U^2}\right)^2 c(x) e^{\frac{g}{U^2} y} \\ & \varphi_{x x}=c^{\prime \prime}(x) e^{\frac{g}{U^2} g} \\ & \frac{g}{U^2} c(x) e^{-\frac{g}{U^2} h}=0 \end{aligned} \]
\(\Rightarrow c(x)=0 \quad\) clearly incorrect.
case 2: \(\varphi=c(x) \cosh \frac{9}{U^2} y\)
\[ \begin{aligned} & \varphi_y=\frac{g}{U^2} c(x) \sinh \frac{g}{U^2} y \\ & \varphi_{y y}=\left(\frac{g}{U^2}\right)^2 c(x) \cosh \frac{g}{U^2} y \end{aligned} \]
and consider equation (2)
\[ \begin{aligned} & \varphi_y-\frac{U^2}{g} \varphi_{y y}=0 \\ \Rightarrow & \frac{g}{U^2} c(x) \sinh 0-\frac{U^2}{g}\left(\frac{g}{U^2}\right)^2 c(x) \cosh 0=0 \\ & \frac{g}{u^2}=0 ? \quad \text { as } y=0 \end{aligned} \]
Clearly incorrect!
case 3: The solution may require the addition of arbitrary constants to ensure equality, thus we give
\[ \varphi=c(x) \cosh m(y+n) \]
Here, constants are added to the terms containing \(y\). Similarly. substitute it into equation (3) \[ \begin{aligned} & \varphi_y=m c(x) \sinh m(y+n) \\ \varphi_{y y} & =m^2 c(x) \cosh m(y+n) \\ \Rightarrow & y=-h \quad m c(x) \sinh m(n-h)=0 \\ \Rightarrow & h=n \end{aligned} \]
also apply \(\varphi\) into equation (2)
\[ \begin{aligned} & \varphi_y-\frac{U^2}{g} \varphi_{y y}=0 \quad \text { at } \quad y=0 \\ \Rightarrow & mc(x) \sinh m h-\frac{U^2}{g} m^2 c(x) \cosh m h=0 \\ \Rightarrow & \tanh m h=\frac{U^2}{g} m^2 \end{aligned} \]
Next, substitute \(\varphi\) into equation (D)
\[ \begin{aligned} & \varphi_{x x}=c^{\prime \prime}(x) \cosh m(y+h) \\ \Rightarrow & c^{\prime \prime}(x) \cosh m(y+h)+m^2 c(x) \cosh m(y+h)=0 \\ \Rightarrow & c^{\prime \prime}(x)+m^2 c(x)=0 \end{aligned} \]
two roots: \(\sin m(x+\beta), \cos m(x+\beta)\). Given that we are interested in a specific solution any solution will be adequate. As such \(\cos m(x+\beta)\) is chosen
\[ \varphi=A \cosh m(y+h) \cos m(x+\beta) \]
Investigation \((m, h)\)
Let \(\zeta=\tanh \xi ; \xi=m h\) and Eqn (4) implies that \[ \zeta=\frac{U^2}{g h} \zeta \]
As for the two equation related to \(\zeta\) and \(\xi\).
\[ \left\{\begin{array}{l} \zeta=\tanh \xi \\ \zeta=\frac{U^2}{g h} \xi \end{array}\right. \]
Case 1. \(\frac{U^2}{g h}<1 \Rightarrow 2\) real roots and \(\xi=0\) is always a root
Case 2. \(\frac{U^2}{g h} \geqslant 1\) no real root besides 0
Case 3. \(\tan i \xi=i \tanh \xi \Rightarrow\) many pure imaginary roots
if \(\frac{U^2}{g h}<1\) there is other type motion other than steady flow. The discussed wave seems to hold no condition at $\infty$ other than boundedness conditions. note that only include boundedness conditions
Investigation of boundary conditions
For steady waves due to disturbances, the boundary conditions may contain 2:
- disturbance die out upstream
- boundedness condition
notes
boundedness conditions \(\left\{\begin{array}{l}\varphi \text { and } \varphi_y \text { bounded at } \infty \\ \varphi \text { bounded and } \varphi_y=O\left(p^{-1+\varepsilon}\right), \varepsilon>0 \text { at } x= \pm a\end{array}\right.\) \(x \pm a \rightarrow\) disturbance source
behavior \(t \rightarrow \infty\)
➡️ \(\frac{U^2}{g h}>1\), waves die out at infinity both upstream and downstream
➡️ \(\frac{U^2}{g h}<1\), waves die out upstream but not downstream at infinity
➡️ \[ \frac{U^2}{g h}=1 \rightarrow\left\{\begin{array}{l} \text {1) no steady state as } t \rightarrow \infty \\ \text {2) disturbance potential }(\varphi) \rightarrow \infty \rightarrow\left\{O\left(t^{\frac{2}{3}}\right)\right\}\\ \text { at all points }(t \rightarrow \infty) \\ \text{3) }\vec{u} \quad(t \rightarrow \infty) \end{array}\right. \]